PET/MR and PET/CT for Coronary Artery Disease: Prime Time or Not?

Jin Chul Paeng, MD Department of Nuclear medicine Seoul National University Hospital

SEOUL NATIONAL UNIVERSITY HOSPITAL

Contents

PET Imaging in Coronary Artery Disease

- FDG PET
- Myocardial Perfusion PET

4 Recent Advances in PET for Coronary Artery Disease

- Instrument (hybrid imaging of PET/MR and PET/CT)
- Image analysis
- Radiopharmaceuticals
- Clinical needs

4 The Question: Is It Prime Time or Not?

PET Imaging in CAD

FDG PET Perfusion PET

FDG PET for Viability Assessment

🖊 Energy Metabolism

- Preserved glucose (anaerobic) metabolism
- Perfusion-metabolism mismatch

Current Reimbursement by K-NHIS

(Since 2006)

1. [본인일부부담금 산정특례에 관한 기준(보건복지부 고시)] [별표 3(중증질환)]의 구분 1~3과 [별표 4(희귀난치성 질환)] 으로 분류된 질환범주(암, 뇌혈관, 심장, 희귀난치성 질환) 의 경우에는 아래의 범위 내에서 요양급여를 인정함.

나. 허혈성 심질환에서 심근의 생존능 평가 : 치료 전, 치료 후 각각 1회로 인정함

Perfusion PET (in comparison with SPECT)

- **Why PET ?**
 - Better image quality
 - CT attenuation correction
 - Localization
 - Sensitive for mild change
 - Low radiation dose: 1.5 to 5 mSv
 - Patients' convenience
 - Absolute flow measurement with ease
 - Tracers: ¹⁵O-water, ¹³N-ammonia, ⁸²Rb, ¹⁸F-flurpiridaz
 - Higher extraction fraction of PET tracers
 - Easy dynamic scan for kinetic analysis

Perfusion PET Quality & Accuracy

SEOUL NATIONAL UNIVERSITY HOSPITAL

Flow Quantification

M/61. Underlying DM, CRF without symptom Screening CT CAG: pLAD 50% CAG: LM and LAD: diffuse, FFR 0.61 dLCX: 40%, FFR 0.78 / dRCA 60% FFR 0.78 Medical F/U and NH₃ PET after 1.5 years

Flow Quantification

 \rightarrow Referred for CABG

Needs for Functional Study: FAME I

- **FAME** (Fractional Flow Reserve vs. Angiography for Multivessel Evaluation)
 - FFR-guidance deferred 37% of PCI with better outcomes.

Pijls et al. *J Am Coll Cardiol* 2010;56:177

	Angiography Group (n = 496)	FFR Group (n = 509)	p Value*
Procedural and 1-yr costs			
Materials, U.S.\$	$\textbf{6,007} \pm \textbf{2,819}$	$5,332 \pm 3,261$	<0.001
Hospital stay at baseline admission, days	3.7 ± 3.5	3 .4 ± 3.3	0.05
Incremental health care costs at 1 year, U.S.\$ \P	14,357	12,291	<0.001
Myocardial infarction	49 (9.9)	31 (6.1)	0.03
CABG or repeat PCI	63 (12.7)	54 (10.6)	0.30
Death or myocardial infarction	64 (12.9)	43 (8.4)	0.02
Death, myocardial infarction, CABG, or repeat PCI	111 (22.4)	91 (17.9)	0.08

SEOUL NATIONAL UNIVERSITY HOSPITAL

IIII

BUDI

TO

AHA

SNUH · 서울대학교병원

FAME II

- **Angiographically Proven Stenosis**
 - In 25%, FFR was not significantly low.
 - Regarding FFR <0.80, significantly different outcome

Myocardial Infarction

Primary End Point

1111

BUDR

Urgent Revascularization

De Bruyne et al. New Engl J Med 2012;367:991

SEOUL NATIONAL UNIVERSITY HOSPITAL

Medical therapy

9 10 11 12

SNUH 🖸 서울대학교병원

FFR vs. CFR

4 CFR (Coronary Flow Reserve)

- Absolute CFR: ratio of maximum stress flow to rest flow
- Relative CFR: ratio of maximum stress flow in the diseased artery to maximum stress flow in the absence of disease in either the same or adjacent arterial distribution

Gould et al. J Am Coll Cardiol 2013;62:1639

4 CFR on Perfusion Imaging vs. FFR

- FFR: Q_s/Q_n (= relative CFR)

De Bruyne et al. Circulation 1994;89:1013

Marques et al. J Nucl Med 2007;48:1987

SEOUL NATIONAL UNIVERSITY HOSPITAL

Functional Imaging Studies

Î

TIT

Modality	Methods	Pro	Con
CT Perfusion	Dynamic enhancement Semi-kinetic analysis	Easy	Radiation (dynamic) Need for validation
MR Perfusion	Dynamic enhancement Semi-kinetic analysis	No radiation	Need for validation Cost
CT FFR	Hydraulic assumption with 3D CTA	Accessibility	Radiation Need for validation
SPECT	Difference in uptake Kinetic analysis	Accessibility Validation	Radiation Image quality (vs. PET)
PET	Difference in uptake Kinetic analysis	Validation Absolute value	Cost Accessibility

Absolute Perfusion from Perfusion CT

So et al. Int J Cardiovasc Imaging 2012;28:1237

linear fit. In addition, the regional MBF was determined by using the following equation: $(US_{MC}/PE_{IVC}) \cdot k$, where US_{MC} is the upslope in the myocardium, PE_{IVC} is the peak enhancement in the left ventricular cavity, and k is a correction factor of 1.5 mL/g/min used to calculate the MBF. The prospectively defined correction factor was higher than that used in previous studies (13,14),

Huber et al. Radiology 2013;269:378

$$MBF = \frac{MaxSlope(TissueTAC)}{Maximum(AIF)}$$

TABLE 1. Parameter Values for the Total Left Ventricular (LV) Myocardium of the Control Group

	No Adenosine	Adenosine	Adenosine vs. No Adenosine
ABF (mL/100 mL/min)	98.2 ± 18.6 (75.0-119.0)	134.0 ± 40.1 (85.0-191.0)	P = 0.0153
PDV (mL/100 mL)	13.3 ± 1.8 (11.0-15.8)	16.6 ± 3.2 (11.9-19.6)	P = 0.0078
3V _{iv} (mL/100 mL)	$6.2\pm1.5\;(4.17.6)$	9.4 ± 3.3 (5.5–13.5)	P = 0.0213

All values are presented as mean ± SD with the range given in brackets.

MBF, Myocardial Blood Flow; FPDV, first pass distribution volume; BV₁₀, intravascular blood volume.

Mahnken et al. Invest Radiol 2010;45:298

SNUH 🕽 서울대학교병원

Absolute Perfusion from Perfusion MR

Kurita et al. *Eur Heart J* 2009;30:444

Patlak Plot Method

IIII

BEDE

$$\frac{\mathrm{d}C_{\mathrm{myo}}(t)}{\mathrm{d}t = K_1 C_{\mathrm{a}}(t) - k_2 C_{\mathrm{myo}}(t)}$$

$$\frac{\mathrm{d}C_{\mathrm{myo}}(t)}{\mathrm{d}t} \cong K_1 C_{\mathrm{a}}(t).$$
$$K_1 = C_{\mathrm{myo}}(T) / \int_0^T C_{\mathrm{a}}(t) \mathrm{d}t$$

$$dCt(t)/dt = K1 \times Ca(t) - k2 \times Ct(t)$$

K1Patlak =
$$\frac{R(t)}{\int_0^T LV(t)dt}$$

Tomiyama et al. J Mag Res Imaging 2015;42:754

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

Absolute Flow Measurement: 13N-NH₃

- Two-tissue compartment model (Michigan/UCLA)
 - Hutchins et al. JACC 1990;15:1032 /Choi et al. JNM 1999;40:1045
- One-tissue compartment model (Duke)
 - De Grado et al. JNC 1996;3:494

Recent Advances of PET Imaging in CAD

Instrument / Analysis Radiopharmaceuticals

Hybrid Imaging: SPECT/CT and PET/CT

SEOUL NATIONAL UNIVERSITY HOSPITAL

IIII

TIT

SNUH State Magazina

Multicenter Clinical Trial: EVINCI

- Software-based Fusion
 - MPS and CTCA

BUDR

- F/U by CAG and FFR

SEOUL NATIONAL UNIVERSITY HOSPITAL

PET/MRI

IIII

BEDE

TIT

TARAI

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

FDG PET/MRI in H-CMP

IIII

8000

Kim KJ et al. Presented at KSC 2015

SEOUL NATIONAL UNIVERSITY HOSPITAL

FDG PET/MRI for Viability Assessment

SEOUL NATIONAL UNIVERSITY HOSPITAL

BUDI

TO

THE

SNUH State Magazina

Analysis Tools for Perfusion

MBF module (Siemens)

Carimas[®] (Turku PET Centre)

QPS[®] (Cedars-Sinai)

FlowQuant[®] (U.O.)

BEDE

PMOD[®] (PMOD Tech.)

Corridor4DM[®] (U.M./INVIA)

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH State Martine State

Myocardial Perfusion Tracers

	²⁰¹ Tl	99mTc Agents	¹⁵ O-H ₂ O	¹³ N-NH ₃	⁸² Rb	¹⁸ F-Flurpiridaz
T _{1/2}	73 h	6.01 h	122 sec	9.96 min	76 sec	110 min
Photon Energy	70 keV	140 keV	Positron	Positron	Positron	Positron
Uptake Mechanism	Na/K Channel	Diffusion – Mitochondria	Free Diffusion	Diffusion - Glutamine Syn.	Na/K Channel	Diffusion – Mitochondria
Supply	Pre-order	Labeling	Cyclotron	Cyclotron	Generator (⁸² Sr/ ⁸² Rb) (T _{1/2} = 25 d)	Cyclotron - Delivery (?)
Dose (MBq)	55 – 111	370 - 925	1,000 - 2,000	370	1,000 – 2,000	185
Exposure (mSv)	12 mSv (6 mSv/mCi)	MIBI: 8 mSv (0.4 mSv/mCi) TF: 5.6 mSv (0.28 mSv/mCi)	<mark>2.4 mSv</mark> (0.04 mSv/mCi)	1.5 mSv (0.08 mSv/mCi)	<mark>3.8 mSv</mark> (0.13 mSv/mCi)	< 3
Current Status	30,600/mCi	68,000/0.25v	조제실 제제	품목허가 / 조제실제제	FDA 승인 국내 미도입	해외 임상 3상
				↓ 인정비급여(2015)	↓ 도입 추진 중	

SEOUL NATIONAL UNIVERSITY HOSPITAL

REDE

THI TOTAL

SNUH State Aller State

Differences in Quantification

	Advantages	Disadvantages	Threshold values for CAD detection
¹⁵ O-Water	 Freely diffusible (linear relationship with MBF) Robust and reliable compartmental modelling Intrinsically quantitative Tight time schedule Wide experience, particularly with hybrid imaging 	 Cyclotron product Very short half-life (complex tracer handling) Absence of morphological myocardial images Complex VOI definition 	Maximal MBF <2.3 mL/min/g, CFR <2.5
¹³ N-Ammonia	 Short positron range Reliable compartmental modelling High-quality myocardial images High-quality gated PET Wide experience 	 Conventional gated PET impossible Cyclotron product Nonlinear extraction fraction Metabolic interferences Prolonged patient schedule 	Maximal MBF <1.85 mL/min/g, CFR <2
⁸² Rb	 Generator product Very tight time schedule Gated PET possible Wide experience, but largely with qualitative imaging 	 Wide positron range Dose-related dead-time losses (3-D imaging) Prompt gamma interference (3-D imaging) Suboptimal extraction fraction Complex compartmental modelling Higher variability of estimated parameters 	Maximal MBF <1.4 mL/min/g, CFR <1.7

Table 1 Comparison of the available tracers for quantitative perfusion PET

Sciagra et al. Eur J Nucl Med Mol Imaging 2016 EPub

SNUH V 서울대학교병원

Study Protocol of ¹³N-NH₃ PET

1. Rest : 10 min list-mode dynamic

2. Interval : > 30 min

3. Stress : 10 min list-mode dynamic

♣ Scheduling & Cyclotron: 1일 2회 생산 / 최대 4명 / 평균 2명 검사

- **4** Dynamic Image Frame
 - 12×10 s
 - 6×30 s
 - 2×60 s
 - 1×180

A total of 1.6 mSv from PET (Tl 2 mCi + MIBI 15 mCi: 15 mSv)

- 4 Protocol Summary
 - Room occupying time: 30 min (2회 합계)
 - Scanner occupying time: 25 min
 - Administered radioactivity: 20 mCi of ¹³N-NH₃
 - Radiation dose: < 2 mSv</p>

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

⁸²Rb Perfusion PET Protocols

J Nucl Cardiol 2010;17:498

BUDI

⁸²Rb Injection System

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH 🖸 서울대학교병원

Absolute Perfusion Measurement

- Need for Quantification of Absolute Myocardial Perfusion
 - 'Balanced ischemia'
 - General microvascular disorders, DM
 - Absolute CFR
- Microvasculature of Myocardium

SEOUL NATIONAL UNIVERSITY HOSPITAL

Microvascular Dysfunction in Women

CAD in Women

IIII

BEDE

- Atypical non-exertional angina with diffuse CAD
- High mortality in aged women when focal stenosis occurs
- Related to diffuse CAD/MVD

Patel et al. JACC Cardiovasc Imag 2016;9:465

SNUH State Martine

Imaging Targets of Vulnerable Plaque

Lee SJ and Paeng JC Kor J Radiol 2015;16:955

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

Imaging mechanism: TSPO (PBR; peripheral benzodiazepine receptor) expression on macrophages

IN LEVE

โกิลิกิก

IIII

BEDE

ពិជិធិត

Gaemperli et al. Eur Heart J 2012;33:1902

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

¹⁸F-gRGD PET in Human

p = 0.70

0

Symptomatic

Stenosis

60

50

40

30

20

10

0

0

0

0

Asymptomatic

Stenosis

BEDE

T/B Ratio (%)

Beer et al. JACC Cardiovasc Imaging 2014;7:178

Calcification F-18 Fluoride PET

IIII

 BEDE

Active calcification in coronary artery

Dweck et al. JACC 2012;59:1539

SEOUL NATIONAL UNIVERSITY HOSPITAL

¹⁸F-Fluoride PET in Human

IIII

 BEDE

	^{1®} F-fluoride positive plaques (n=15)	¹⁸ F-fluoride negative plaques (n=24)	р
Lumen			
Area (mm²)	9.0 (5.7-13.5)	6.7 (4.7-9.7)	0.078
Minimal diameter (mm)	2.6 (1.7-3.1)	1.9 (1.7–2.6)	0.165
Maximum diameter (mm)	4.9 (4.1-5.3)	3.6 (3.1-4.6)	0.006
Vessel			
Area (mm²)	24.1 (17.2–27.1)	14.5 (11.9–18.1)	0.002
Minimal diameter (mm)	4.4 (3.4-5.2)	3.6 (3.0-4.1)	0.057
Maximum diameter (mm)	6.5 (6.0-7.1)	5.2 (4.7-5.9)	0.0001
Plaque			
Length (mm)	14.2 (6.2–23.5)	15.2 (6.7–25.0)	0.941
Volume (mm³)	152.9 (99.6–289.7)	91.0 (45.8–158.2)	0.032
Burden (%)*	55.6 (48.6-64.4)	54·2 (46·3–57·3)	0.174
Remodelling index	1.12 (1.09–1.19)	1.01 (0.94–1.06)	0.0004
Plaque composition			
Fibrous tissue (%)	51.0 (46.3-56.6)	58.1 (51.6-65.5)	0.015
Fibro-fatty (%)	10.9 (6.0–13.8)	12.6 (9.3–17.8)	0.092
Necrotic core (%)	24.6 (20.5–28.8)	18.0 (14.0–22.4)	0.001
Maximum frame necrotic core (%)†	35.5 (34.2-40.5)	29.2 (23.9–42.1)	0.009
Dense calcium (%)	12.6 (9.1–18.1)	10.2 (4.0–14.9)	0.092
Microcalcification, n (%)	11 (73%)	5 (21%)	0.002
Plaque classification, n (%)			
Thin-cap fibroatheroma	7 (47%)	4 (16%)	0.068
Thick-cap fibroatheroma	5 (33%)	9 (38%)	1.0
Pathological intimal thickening	0	7 (29%)	0.003
Fibrocalcific plaque	3 (20%)	4 (16%)	1.0

Joshi et al. Lancet 2014;383:705

SEOUL NATIONAL UNIVERSITY HOSPITAL

SNUH · 서울대학교병원

Approved Healthcare Technology in NM

	신의료기술/약품품목허가 내역	보험급여
2009년 이전	(약품 품목허가) ¹⁸ F-FDG, ¹⁸ F-FLT, ¹⁸ F-FPCIT	¹⁸ F-FDG PET (2006년)
2010년	(2010-15호) 동맥경유방사선색전술 (2010-105호) ¹⁸ F-NaF PET, ¹¹ C-acetate PET	
2011년		
2012년	(2012-92호) ¹⁸ F-FLT PET, ¹⁸ F- FPCIT PET (2012-112호) ¹²³ I-FPCIT SPECT, ¹³ N-NH ₃ PET (2012-131호) Radioiodine SPECT/CT	
2013년	(2013-114호) ¹¹ C-methionine PET	
2014년	(약품 품목허가) ²²³ Ra-chloride (Xofigo [®]) (2014-89호) ¹⁸ F-FDOPA PET (2014-198호) ⁶⁸ Ga-DOTATATE PET	(제한적 급여) ¹⁸ F-NaF PET, ¹⁸ F-FPCIT PET, ¹²³ I-FPCIT SPECT
심의 중	¹⁸ F-FMISO PET 등	

1

TIT

Fluoride PET for Coronary Artery

SEOUL NATIONAL UNIVERSITY HOSPITAL

Ītī

Lee JM, Koo BK, et al. In Preparation

Summary: Prime Time or Not?

Position of Perfusion PET in CAD

- Absolute flow measurement
- Lower radiation, shorter imaging time, and higher image quality

Recent Changes in PET Imaging

- Enabling of clinical perfusion PET / prospect for more RP
- New technology: hybrid imaging and easy analysis tools
- Clinical evidences for needs of perfusion measurement
- However, still limited clinical availability and appropriate niche

Future Direction

- Improvement in clinical availability
- Molecular imaging for risk stratification of CAD (?)

